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Abstract

Conditionally cooperative preferences have been proposed as one of
the main drivers of cooperation, as well as the reason for the decline in
social dilemma experiments. Understanding the dynamics of cooperation
generated by these preferences is vital to promote sustainable cooperation.
Numerous studies showed that the majority of experimental subjects show
conditionally cooperative preferences. And most the participants can be
categorized into three types: conditional cooperators, self-maximizers and
hump-shaped (triangle) cooperators.

In this study, I investigate the role on conditional strategies and their
evolutionary success in an extended Prisoner’s Dilemma Game. I show
that, when the agents are likely interact in a population and a high
level of cooperation is achievable, the most successful strategies are those

∗Scripts for the simulations are available on the GitHub repository: https://github.
com/seyhunsaral/evolutioncc
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who employ an all-or-none type of conditional cooperation, followed by
perfect conditional cooperators. When the likelihood of interaction is in
an intermediate level, however, hump-shaped contributor types are the
ones that are most likely to thrive, followed by imperfect conditional
cooperators. The study provides a tractable reasoning of the success
of particular conditional stragegies. Among these results, I illustrate
existence of hump-shaped type of cooperators with a purely payoff-based
reasoning, as opposed to previous attempts to explain this strategy with
psychological mechanisms.

Keywords: reciprocity | conditional cooperation | reactive strategies |
hump-shaped contributors

Introduction

Humans are distinct in their cooperation capabilities, if not unique (See Bowles
and Gintis, 2011; Wilson, 2012). As a species, we heavily depend on the mutual
cooperation of individuals. At first glance, from an evolutionary perspective, it
seems counter-intuitive for individuals to cooperate in an enviroment in which
cooperation is costly and free riding is beneficial: any fraction of free-riders
would better beter off than those who cooperate, and would therefore have a
higher evolutionary fitness. Since it would be easy to exploit the cooperators in
such a population, it is just matter of time for cooperation to be eradicated. Then,
how come cooperation is so common in some species including us humans?

A wide range of theories have been put forward to explain this puzzle.1

One of the most prominent answers has been reciprocal altruism (Trivers, 1971;
Axelrod and Hamilton, 1981; May, 1987; Nowak and Sigmund, 1992, 1993). Given
that there is a positive probability for individuals to interact again, if the benefit
of an aid is sufficiently greater than its cost, then cooperation of unrelated
individuals can arise. In game theory literature, Folk theorems show that,
if the threat of defection is present in the future, cooperating today is more

1See Nowak (2006); Bowles and Gintis (2011); Henrich and Muthukrishna (2021) for a review.
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beneficial; therefore, a cooperative strategy in the stage game, as well as any
other individually rational strategy, can be the equilibrium of the supergame
(Friedman, 1971; Fudenberg and Maskin, 1986). Moreover, Axelrod’s simulations
on the Prisoner’s Dilemma support those theoretical results by showing that
the reciprocal tit-for-tat is a strong strategy that allows cooperation while it
is immune to exploitation by selfish players (Axelrod, 1980a,b; Axelrod and
Hamilton, 1981).

Themain dynamics of cooperation through reciprocity can be summarized as
follows: reciprocators cooperate among each other as they reciprocate kindness
over time. Therefore they receive a higher payoff than the selfish types who
meet other selfish types. And when a reciprocator meets a selfish type, the
reciprocator responds selfishly after the first defection. Thus, the exploitation
of a reciprocator by a selfish individual is not sustainable when the probability
of future interaction is sufficiently high.

Howver, empirical evidence on the Prionser’s Dilemma and the Public Goods
Game draws a rather different picture: cooperation tends to decline over time,
whether subjects play the game within the same group or matched with others
(Selten and Stoecker, 1986; Andreoni et al., 1993; Cooper et al., 1996; Ledyard,
1994; Kim and Walker, 1984; Isaac et al., 1985; Andreoni and Croson, 2008). This
declining trend in the Public Goods Game is often, and arguably best, explained
by conditional preferences. The evidence was provided by Fischbacher et al.
(2001), who collects conditional choices of subjects to the common pool by using
the strategy method. According to their results, most of the participants reveal a
preference pattern, in which they will only contribute if the others contribute
as well, albeit with a selfish bias; they tend to contribute less to the public
pool than the the average contribution by others. Conditionally cooperative
preferences has been documnted widely, although those type of conditional
strategies is not sufficient to sustain cooperation, as contributions tend to decline
over time (Kocher et al., 2008; Herrmann andThöni, 2009; Neugebauer et al., 2009;
Fischbacher and Gächter, 2010; Chaudhuri, 2011; Hartig et al., 2015; Andreozzi
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et al., 2020)

Conditional Cooperation and Evolutionary GameTheory

Early models based on conditional strategies were investigated in disciplines
which employ game-theoretical approaches, such as biology and political
science. Axelrod’s research showed the success of tit-for-tat, a strategy beginning
with cooperation in the initial interaction and then copying its opponent’s
from the previous period (Axelrod, 1980a,b; Axelrod and Hamilton, 1981). An
analogy of a tit-for-tat strategy in a Fischbacher-Gächter framework would
be a perfect-conditional-cooperation strategy that matches the individual’s
contribution to the contribution by others. One should expect this kind
strategy to be employed in real-life decisions due to its alleged success. In
the experiments, however, perfect-conditional-cooperators are outnumbered
by imperfect conditional cooperators who tend to give less than what others
give. Reciprocity by imperfect conditional cooperators is not enough to sustain
cooperation, not just within other commonly observed conditional types, but
also when they interact among each other (Fischbacher and Gächter, 2010).
Moreover, later results showed that the tit-for-tat strategy was vulnerable
when mistakes happen: when an accidental decline occurs, tit-for-tat was not
able to reestablish cooperation back again, unless another mistake corrected
it (Hirshleifer and Coll, 1988; Selten and Hammerstein, 1984; Fundenberg and
Maskin, 1990; Nowak and Sigmund, 1993).

A related line of research with conditional strategies was mostly investigated
in biology. So-called “variable investment models” provided more insights
into successful conditional-like strategies in social dilemmas. These models
differ considerably from conditional strategies defined in a Fischbacher-Gäcther
framework, as well as from each other by their assumptions; therefore it is not
straightforward to compare their results.2 For instance, in Doebeli and Knowlton
(1998), the agents are characterized by two parameters; a parameter that defines

2See Sherratt and Roberts (2002) for a review of some early papers.
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the unconditional altruism, and another defining the amount of reciprocation
proportional to the difference between one’s own altruism and that of the other.
In their setup, they use a continuous altruistic investment game in which the
marginal benefit of altruism decreases. Their evaluation of the success of their
strategies takes pairwise comparison into account with the mutants of that
strategy. They show that, unless a spatial structure is assumed, selfish types
are the most successful ones. Roberts and Sherratt (1998) use a different agent
definition in which costs and benefits are linear and investments can increase.
They take representative strategies for a tournament: Non-altruistic agents, who
do not invest at all; Give-as-good-as-you-get strategies, which invest as much
as the other; raise-the-stake strategies, amplifying the investment, short-changer
strategy, which gives less to the other than what the other gives, all-or-nothing
strategy, which gives an amount and amplifies it only if other reciprocates as
much or more. Roberts and Sheratt find that the raise-the-stake strategy is a
stable cooperator as it cautiously invests but repeated interactions allow it to
reach high cooperation levels.

Wahl and Nowak (1999a,b) provide a framework of reactive strategies under
adaptive dynamics by providing a linear and continuous extension of the
Prisoner’s Dilemma in which different amount of contributions are possible.
In their framework, they define a reactive strategy with three parameters: the
initial move, the slope of the reaction function, and the intercept of the reaction
function. Their results suggest that the initial move is a decisive factor in
terms of success of a strategy. Moreover, Wahl and Nowak conclude that
strategies that are generous, uncompromising and optimistic (in terms of initial
move) are the most successful ones. An important result of those studies is
that they demonstrate cycles of cooperation and defection over time. Indirect
invasions deter reciprocal strategies which are normally resistant to direct
invasion: more cooperative and/or compromising strategies are able to invade
reciprocal strategies as those types are exploitable. That allows the invasion of
the population by selfish types.
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van Veelen et al. (2012) uses a generalized computational model. They
run simulations of a Prionser’s Dilemma game with finite automata. Their
strategies can evolve to be reactive strategies or strategies that consider several
rounds of histories depending on the complexity of the strategy generated by
mutations. Moreover, their model investigates different levels of assortativity in
the population structure. They show that reciprocity and population structure
can jointly work in favor of reciprocal strategies. However, reciprocity itself is
not sufficient to create and to foster cooperation with random interactions.

Considering these theoretical and computational results on conditional
cooperation and reactive strategies, the following question arises; if we consider
the set of strategies with those conditional strategy classifications defined by
Fischbacher et al. (2001) framework, how likely would it be for cooperation to
arise, and which particular strategies would be more successful than the others?

The two closest approaches to this study are Szolnoki and Perc (2012)
and Zhang and Perc (2016). Szolnoki and Perc (2012) use a spatial structure
to investigate conditional cooperation in Public Good Games. Their agents
condition on the number of cooperators rather than the strategies themselves.
The authors found that the more cautious conditional cooperators enable high
levels of cooperation and limit the outreach of defectors by surrounding them
spatially.

Zhang and Perc (2016) investigates the evolution of conditional types in
a Public Goods Game in an agent-based model. The strategies their agents
use are a combination of continuous and discrete functions. In their setup, a
multilevel selection procedure is used. They found that the most successful type
is the conditional cooperator type that contributes nothing up to a mid-level
contribution by others, but increases its contribution gradually to the full
cooperation when others agents’ average contribution is maximum. This type
of strategy can be considered as “all-or-nothing” type of strategy.

As we draw the general picture, there are certain regularities and mixed
results in the literature. Those related with our research questions can be
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summarized as the following:

• Cooperation and defection strategies are likely to oscillate inmost settings,
especially without certain assumptions in the population structure. In
Prisoner’s Dilemma game, no pure strategy is evolutionary stable, and
reactive strategies are vulnerable to indirect invasions.(van Veelen, 2012;
van Veelen et al., 2012) Therefore, those strategies that use a mixture of
actions need further investigation.

• When there is room for mistakes, it is often unclear how the results
obtained by simulations align with theoretical expectations.

• There is a certain degree of mismatching between the actual behavior
in experiments and the theoretical predictions in the framework of
conditional strategies.

This study aims to fill this gap by demonstrating the success and estimating
the likelihood of conditional strategies. In this study, I investigate the conditional
preferences in the framework of Fischbacher et al. (2001), using computational
methods. I examine the evolutionary success of those conditional strategies in
a social dilemma with a simplified framework. I create populations of agents
with the types drawn from of the set of all conditional strategies within our
framework. Each agent randomly pairs with another agent to interact in this
social dilemma, and continues to interact with probability δ. I simulate an
evolutionary reproduction mechanism based on the success of the strategies
shape the population structure and I examined success of those strategies for
different continuation probabilities δ.

The results can be summarized as follows: selfish and close-to-selfish
conditional cooperators are likely to be successful when the continuation
probability is relatively low. Depending on the value of continuation probability,
imperfect conditional cooperators who only fully cooperate when the opponent
fully cooperates, perfect-conditional cooperators, and agents with hump-shaped
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contribution schedule are relatively successful when the continuation probability
is sufficiently high. Unconditionally cooperating strategies are unlikely to
survive even at high probabilities of continuation. And finally I conclude that
the initial move aligned with the conditional strategy plays a crucial role in the
survival of those conditional strategies.

Methods

This study focuses on the conditional strategies in a two-player social dilemma.
Themodel I use has certain differences compared to thosemodels in the literature
which I referred in the previous section. First, I choose a setup that is closer
to a standard game theoretical framework, in the sense that we do not assume
a population structure, but instead use uniform random matching procedure
for the agents. However the simulations can easily be extendable to such
population structures. Second, I use a minimal setup which allows us to observe
conditional strategies, ad defined by Fischbacher & Gächter framework and
we avoid unnecessary computational complexities. I use an iterated Prisoners
Dilemma with three strategies and discrete linear response functions that do not
assume or limit the shape of the response functions. Moreover, I also control for
the initial reactions, as it is often stressed that they play an important role on the
path of the dynamics.

Linear Extension of the Iterated Prisoner’s Dilemma

I use an extension of the Prionser’s Dilemma game called Three-Actions
Sequential Prisoner’s Dilemma (3SPD) (Andreozzi et al., 2020). In this extended
game, the three actions represent different cooperation levels: L (Low) refers
to no cooperation/defection; M (Medium) refers to an intermediate cooperation
level; and H (High) refers to full cooperation.

The cost of cooperation is c, while the benefit of cooperation to the opponent
is b, with the constraint b > c > 0. If an agent plays the strategy L, this agent
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keeps the endowment for themself and no change will occur in payoff of the
opponent. If the agent plays the strategy H , this agent pays the cost c and their
opponent gets the benefit b. If the agent plays M , this agent will only pay the
half the amount of the cost of full cooperation but the benefit to the opponent
will be half as much as well, i.e., the agent pays a cost of c/2, while the opponent
gets the benefit b/2.

The normal-form representation of the game is shown in Table 1. For the
simulations, I used the following parameters: the cost of cooperation c is equal
to 1, the benefit of cooperation b is equal to 2, and we set the base payoff to 1 to
avoid negative payoffs. The normal-form representation of the game with those
parameters is shown in Table 2.

Player 2

L M H

Player 1

L (0, 0) ( b
2
,− c

2
) (b,−c)

M (− c
2
, b
2
) ( b−c

2
, b−c

2
) (b− c

2
, b
2
− c)

H (−c, b) ( b
2
− c, b− c

2
) (b− c, b− c)

Table 1: Extended Prisoner’s Dilemma Game

Player 2
L M H

Player 1
L (1, 1) (2, 0.5) (3, 0)

M (0.5, 2) (1.5, 1.5) (2.5, 1)

H (0, 3) (1, 2.5) (2, 2)

Table 2: Extended Prionser’s Dilemma Game with Simulation Parameters b=2,
c = 1 and the Base Payoff 1

In order to investigate conditional strategies’ and their effect on cooperation
in a two player game, I used a sequential game setting based on the iterated
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Prisoner’s Dilemma. In this game, for each pair, one of the players is randomly
selected as the first mover and makes the initial move. At this point, the agent
will bear the cost of the action and the opponent will benefit from this action, if
any.

I use an infitely repeated game approach to the iterated Prisoner’s Dilemma
Game: After each round, the game continues with the probability of continuation
δ.

In the first round, the first movers start with their initial move. Then if the
game continues, second movers respond to what their match did in the previous
round according to their conditional strategies. If the game further continues,
the first-mover agents in the first round similarly responds to that action with
their own conditional strategy.

Conditional Strategies

In our model, an agent is characterized by an initial and a conditional strategy.
As our extended Prisoner’s Dilemma has three possible actions (L, M and H),
a conditional strategy has three components. We represent each strategy with
four letters; the first letter separated from the rest with a hyphen. The first letter
corresponds to the initial move of the strategy, where the other three letters
denote the conditional responses to L, M , H respectively. Since, in our context,
there are three possible actions for four different situations, in total there are 81
possible strategies(34). The set of all possible strategies and their classification
can be found in the appendix.

Figure 1 is a demonstration of two conditional strategies in interaction. The
left side shows the actions of the first agent represented by the blue color,
while the right side shows the actions of the agent represented by the red
color. The blue circle refers to the initial move of the left agent, while the
blue arrows, pointing from the actions of the other agent to the agent’s own
actions, represents a conditional reaction. Similarly, for the red agent, the red
circle represents the initial movement, and the arrows represent the conditional
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responses.

L

M

H

L

M

H

M-LMH L-LLL

Figure 1: A Demonstration of the Interaction of Two Agents with Respective
Conditional Strategies M − LMH and L− LLL

As can be seen from the figure, the blue player has the actionM as the initial
move, and respectively he/she playsL if the opponent playsL,M if the opponent
plays M , and H if the opponent plays H . Therefore, this type of the agent is
denoted as M − LMH .

To give an example of the interaction, if the blue player is selected as the
first-mover, it starts with the action M . The red arrow from that node points
to action L of the red player, therefore the red player responds with L. If the
game continues,the blue player responds with L and if it continues further, the
red player responds with L, and so on.

Computational Model

In terms of the procedures of population generation, reproduction and mutation,
I use a similar methodology with van Veelen et al. (2012). First, we generate
a population with a fixed size of 200 agents. The type of the agents in this
population are sampled from all 81 possible types. Each agent lives for one
generation. In each generation, agents are matched in pairs randomly. After
they are paired, the agents play the Extended iterated Prionser’s Dilemma we
described in the previous section. The interaction is repeated with probability
δ. To reduce computational complexity, I sampled the number of interactions

11



from a geometric distribution for each matching in each generation.3 For each
interaction, I normalize the payoffs by dividing the total payoff by the number
of interactions in order to fix the effects of different delta values. After the
interaction by two individuals are stopped, I resample the population according
to payoffs; each agent is expected the have the offspring in the next generation
with the probability that is equal to the proportion to its payoff to the total payoff.
Therefore, agent i ∈ N has the probability of resampling in the next generation
ṗ:

ṗi = (πi/
∑
j∈N

πj)(1− pM),

where πl denotes the normalized payoff of individual l, N denotes the set of
agents, and pM denotes the probability of mutation. Each type has the same
probability of taking place in the next generation through mutations.

We use Monte-Carlo method for our investigation: We repeat each
simulation with the specific parameter for 500 times independently. That allows
us to obtain the mean frequency of each action and each strategy in each
parameter and generation over the total number of simulations. Then, these
frequencies can be interpreted as the probability of an action/strategy to exist
in a given parameter.

3The expected number of interactions for a given δ is E[T ] = δ
1−δ . As the first interaction

occurs with certainity in our setting, the expected number of interactions is 1 + δ
1−δ = 1

1−δ .
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Stage Details

Population Generation
Number of Agents: 200
Uniformly from all possible types

Matching Two players: random matching

Interaction
Extended iterated Prisoners Dilemma
Continuation with probability δ

Reproduction and Mutation
Resampling proportional to normalized payoff
Uniform random mutation with a fixed probability
Ran for 5000 generations

Resampling
Regeneration of the population with the same
parameters for 500 times

Table 3: Summary of the Computational Stages

In my model, each agent has a probability of making a mistake p = 0.005.
This means, either as the first mover in the first interaction, in the later
interactions, an agent plays a random strategy. Our results show that mistakes
we introduce has minor effects on the rate of cooperation. The comparision of
the simulation results between the case with mistakes and without them can be
seen in Figure 6.

As the continuation probability δ is the key parameter we are interested in,
we covered a range of values from 0.5 to 0.95 with increments of 0.05.

Results

To interpret the results I have obtained, first I start by demonstrating three single
instances of our simulations for different delta values. Figure 2 shows the fraction
of the actions that are being played in each generation, while Figure 3 shows the
distribution of types in the same interaction.
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Figure 2: Fraction of Actions DuringThree Instances of Simulationwith Different
Continuation Probabilities

As can be seen from Figure 3, no type dominates the population for a long
time. However, when δ is low, defection(L) outperforms cooperative strategies.
In this case the types that are taking over the population are neutral mutants of
the selfish type. When δ increases, occasional oscillations occur both in types
and also in the actions. A single type takes over the population and stays as
the most common type until another type with direct or indirect mutation takes
over. This result is not unexpected, as no type is resistant to indirect invasion
in a Prionser’s Dilemma (van Veelen et al., 2012; García and van Veelen, 2016,
2018). But it gives us the intuition on how to interpret our result of resampled
simulations. As cooperation and defection can occasionally occur, we should
interpret the results in a probabilistic way rather than an expected state of a
population.
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Figure 3: Fraction of Strategies During Three Instances of Simulation with
Different Continuation Probabilities

Result 1 - Full cooperation is more likely to be obtained only at high
values of continuation probability: Figure 4 shows the average fraction of
each action; and similarly, Figure 5 shows the average fraction of each type for
different values of continuation probability δ. Each value shown is an average of
500 simulations that ran over 5000 generations. Moreover, to reduce the effect of
occasional drifts, we averaged last 2000 generations for which our simulations
showed no great variation on the average values.

As δ increases, the existence probability ofM andH gradually increases and
the values of δ inwhich cooperation ismore likely than defection is obtained only
when delta is above a certain threshold. (For our parameters, δ > 0.75, which
is well above the theoretical threshold c/b. Hence, reciprocity is unlikely to
promote cooperation below those values. Moreover, mid-cooperation, although
being Pareto-inferior, is more likely to be obtained for those values. )
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Figure 4: Average Fraction of Actions Over 500 Repetitions for Different Values
of Continuation Probability δ

Focusing on Figure 5, we see that conditional types that are closer to selfish
types are likely to exist in relatively lower values of δ, though it is unlikely for
them to foster cooperation, but they rather likely to survive because they are
neutral mutants when defection is a the common action in the population.

Result 2 - All-or-nothing cooperators are more likely to exist than
perfect conditional cooperators: Figure 5 shows that, in all continuation
probabilities, all-or-nothing cooperators with an optimistic start(H − LLH) are
more likely to exist than perfect conditional cooperators (H − LMH). Those
two types are equivalent if we remove the medium level of cooperation. In this
case, they both play a tit-for-tat strategy.

These strategies would do equally well when they play against each other in
a deterministic setting: They would engage in full-cooperation(H), which would
be adventageous for both types when the conditional cooperation probability
is sufficiently high. However, when mistakes happen, all-or-nothing strategy is
likely to exploit mistaken mid level cooperation(M ) by others.
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Result 3 - Initial move of a strategy is a determinant of the success of
a conditional decision: Consider three strategies which are identical in their
responses to the counterpart, but differ in their initial move: L−LLH ,M−LLH

and H − LLH . All of these types, in an experimental study, would be classified
as conditional cooperators. Our evidence shows that their success is highly
dependent on the initial move. For instance, L − LLH is relatively successful
when δ is low and cooperation is unlikely. In this case, an opponent that plays
H is unlikely to exist in the population, and the reaction of this strategy is L
for all other strategies. This strategy does as good as the selfish the selfish
strategy. However, agents using this strategy often fail to cooperate within each
other, unless a mistake leads to high cooperation, as none of the two interacting
parts initiate cooperation. The twin strategy that is successful in cooperating is
H − LMH , but when the continuation probability is low, the first move of this
strategy would cost a significant fitness that is impossible to tolerate with the
cooperation within itself. When the δ is low and the population lacks a structure
that gives a higher probability for similar agents to interact, this strategy fails to
survive. The strategy M − LLH has strong disadvantages both where δ is low,
and it is sufficiently high to sustain cooperation.

Result 4 - Hump-shaped strategies are relatively successful: An
interesting result I obtained is the relative success of hump-shaped cooperators.
Such types of strategy are constantly observed in empirical studies, while the
arguments regarding this type of behavior in those studies are still have been far
from convincing.

In our simulations, we have two types of humped-shaped strategies that are
likely to exist: L−LML andM −LML. The former one is relatively successful
due to its proximity to selfish strategy and virtually behaving as the same as the
selfish agents when no cooperation is common in the population.

The latter one, however is a more interesting case. The reason begind the
success ofM−LML strategy is due to its ability to coordinate inmedium level of
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cooperation with a smaller cost than the other strategies. Moreover this strategy
can exploit high-contributors as well. When the continuation probability δ

is sufficient for cooperation to occur but still risky for high cooperation, this
hump-shaped strategy is relatively successful.

18



delta: 0.95

delta: 0.8 delta: 0.85 delta: 0.9

delta: 0.65 delta: 0.7 delta: 0.75

delta: 0.5 delta: 0.55 delta: 0.6

L−
LL

L

L−
LL

M

L−
LL

H

L−
LM

L

M
−L

M
L

M
−L

M
M

H−L
LH

H−L
M

H

L−
LL

L

L−
LL

M

L−
LL

H

L−
LM

L

M
−L

M
L

M
−L

M
M

H−L
LH

H−L
M

H

L−
LL

L

L−
LL

M

L−
LL

H

L−
LM

L

M
−L

M
L

M
−L

M
M

H−L
LH

H−L
M

H

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

A
ve

ra
ge

 fr
ac

tio
n

class conditional humped perf−conditional selfish

Figure 5: Average Fraction of Strategies Over 500 Repetitions for Different Values
of Continuation Probability δ. The Figure Includes the StrategiesWhich Consists
at Least 10% the Population for at Least One Delta Value.

19



Conclusion

In this study, I investigated the emergence of cooperation and relative success
of conditional strategies in a Three Actions Prionser’s Dilemma (3PD). Some of
the results we obtain provide supporting evidence for the previous results in
the literature. For instance, the oscillations between defection and two levels of
cooperation were expected in the light of previous studies (Wahl and Nowak,
1999b; Nowak and Sigmund, 1989; Bendor and Swistak, 1995; Imhof et al., 2005;
van Veelen et al., 2012; García and van Veelen, 2016; van Veelen et al., 2012).
Moreover, the initial strategy is indeed decisive for the success of a conditional
strategy (Wahl and Nowak, 1999a,b).

The results suggest that, for a conditionally cooperative strategy to be
successful, the initial moves should be in accordance with the action where a
strategy is most successful against itself. The most successful types considering
all possible continuation probabilities are: selfish and relatively selfish types that
start with defection(L); hump-shaped and conditional cooperator type which
has the conditional response LMM that start with M ; and all-or-nothing and
perfect-conditional-cooperator types that start with H . Those types outperform
other types who have the same conditional strategy but a different initial move.
Those results suggest that strategies with a non-aligned initial move fail to reach
the interaction cycle where they would profit most.

A particularly surprising result concerns hump-shaped contributors. Those
types are often observed in experiments in which conditional preferences are
elicited. They are indeed the most common types after conditional cooperators
and selfish types in those experiments. It is hard to rationalize this kind of
strategy which can be counter-intuitive. At a first glance as they would fail
fully to exploit others while not being able to cooperate at a maximum level,
but rather stuck in a medium level of cooperation. However the results suggest
that as they are able to exploit mistakes made by their opponents better than
the cooperative types and they do relatively better than non-cooperative types,
it gives a relative advantage where the continuation probability is moderate. If
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we also consider the case where continuation probability changes over time, we
can expect those types to do relatively better than the others. Our setup might
be misleading though; since we have three levels, a monotonic increase or a
monotonic decrease is not possible around the intermediate cooperation. What
should one expect if there were more levels of cooperation? Possibly the answer
depends on the structure of mistakes: If we assume mistaken moves to similar
actions are more likely, then mistaken moves to actions that are far from the
outcome of the response function,and then we might expect those monotonic
increments and decreases. Due to computational complexities of this expansion
creat, we seek for further research to confirm this hypothesis.

Finally, these results might provide some explanation about the
heterogeneity of conditional strategies we observe in experiments. In our
setting, different type of strategies arise and different continuation probabilities:
selfish types when δ is small, perfect-conditional-cooperators and all-or-none
type of conditional cooperators when δ is high and hump-shaped and imperfect
conditional cooperators when delta is in-between. Though it is possibly a strong
claim that those conditional preferences are direct consequences of evolution,
their success in different continuation probabilities are evident. Therefore
mixing individuals with different histories, either at a cultural sense or at an
evolutionary sense, might result in such heterogeneity.
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Appendix

Type Definitions

denotion classification denotion classification
0 L-LLL selfish 41 M-MMH conditional
1 L-LLM conditional 42 M-MHL humped
2 L-LLH conditional 43 M-MHM humped
3 L-LML humped 44 M-MHH conditional
4 L-LMM conditional 45 M-HLL other
5 L-LMH perf-conditional 46 M-HLM other
6 L-LHL humped 47 M-HLH other
7 L-LHM humped 48 M-HML other
8 L-LHH conditional 49 M-HMM other
9 L-MLL other 50 M-HMH other
10 L-MLM other 51 M-HHL other
11 L-MLH other 52 M-HHM unconditional
12 L-MML other 53 M-HHH unconditional
13 L-MMM unconditional 54 H-LLL selfish
14 L-MMH conditional 55 H-LLM conditional
15 L-MHL humped 56 H-LLH conditional
16 L-MHM humped 57 H-LML humped
17 L-MHH conditional 58 H-LMM conditional
18 L-HLL other 59 H-LMH perf-conditional
19 L-HLM other 60 H-LHL humped
20 L-HLH other 61 H-LHM humped
21 L-HML other 62 H-LHH conditional
22 L-HMM other 63 H-MLL other
23 L-HMH other 64 H-MLM other
24 L-HHL other 65 H-MLH other
25 L-HHM unconditional 66 H-MML other
26 L-HHH unconditional 67 H-MMM unconditional
27 M-LLL selfish 68 H-MMH conditional
28 M-LLM conditional 69 H-MHL humped
29 M-LLH conditional 70 H-MHM humped
30 M-LML humped 71 H-MHH conditional
31 M-LMM conditional 72 H-HLL other
32 M-LMH perf-conditional 73 H-HLM other
33 M-LHL humped 74 H-HLH other
34 M-LHM humped 75 H-HML other
35 M-LHH conditional 76 H-HMM other
36 M-MLL other 77 H-HMH other
37 M-MLM other 78 H-HHL other
38 M-MLH other 79 H-HHM unconditional
39 M-MML other 80 H-HHH unconditional
40 M-MMM unconditional

Table 4: All Possible Types and Their Classifications
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Additional Figures
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Figure 6: Comparison of Actions with and without mistakes.
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Figure 7: All types’ performance for different continuation probabilities.
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